245. The Crystal and Molecular Structure of Dichlorotetrakisthioureanickel, $\left[\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CS}_{4} \mathrm{NiCl}_{2}\right.$.

By Amparo Lopez-Castro and Mary R. Truter.

An X-ray crystal-structure analysis of the complex, $\left[\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CS}\right]_{4} \mathrm{NiCl}_{2}$, has been carried out at $110^{\circ} \mathrm{K}$. There are two formula units in the tetragonal unit cell, $a=9.558, c=8.981 \AA$, with space group $I 4$. Each nickel atom is surrounded by four thiourea molecules related to each other by a 4 -fold axis and two chlorine atoms which complete a distorted octahedron about the nickel. Three-dimensional anisotropic refinement gave the bond lengths (corrected for rotational oscillation) as $\mathrm{Ni}-\mathrm{Cl}=2.40$ and 2.52 each $\pm 0.02 \AA$, $\mathrm{Ni}-\mathrm{S}=2.462 \pm 0.004 \AA, \mathrm{~S}-\mathrm{C}=1.73 \pm 0.03$, and $\mathrm{C}-\mathrm{N}=1.33 \pm 0.04 \AA$. The $\mathrm{Cl}-\mathrm{Ni}-\mathrm{S}$ angles are 96.7° and $83 \cdot 3^{\circ}$ both $\pm 0 \cdot 4^{\circ}, \mathrm{Ni}-\mathrm{S}-\mathrm{C}$ is $113.9^{\circ} \pm 0.8^{\circ}$, and the thiourea molecule is planar with $\mathrm{N}-\mathrm{C}-\mathrm{N} 121^{\circ}, \mathrm{S}-\mathrm{C}-\mathrm{N} 117^{\circ}$ and $122^{\circ} \pm 2^{\circ}$.

As part of a programme in which the dimensions of co-ordination complexes are measured and compared with those in the uncombined ligand molecules, the crystal structures of several compounds of sulphur have been determined. ${ }^{1-4}$ The structure of dichlorotetrakisthioureanickel was chosen for this investigation because a preliminary examination by Nardelli, Cavalca, and Braibanti ${ }^{5}$ had shown that the four molecules of thiourea were related crystallographically and that the nickel atom lay in a position ($0,0,0$) with no co-ordinate parameters, giving the most favourable conditions for an accurate determination of the parameters of the lighter atoms. Thiourea is a ligand molecule which has already been studied in this laboratory. ${ }^{1}$

Measurements were made on crystals at $110^{\circ} \mathrm{K}$ because a lower temperature enables more observations to be made and improves the ratio of the scattering powers of the light to those of the heavy atoms. Preliminary tests showed that there was no phase transformation when the temperature was lowered.

Methods and Results

Crystal Data. $-\mathrm{C}_{4} \mathrm{H}_{16} \mathrm{~N}_{8} \mathrm{~S}_{4} \mathrm{Cl}_{2} \mathrm{Ni}, M=434 \cdot 1$. Tetragonal, $a=9.558, c=8.981 \pm 0.005 \AA$ at $110^{\circ} \pm 10^{\circ} \mathrm{K}, U=820.5 \AA^{3}, D_{m}=1.735$ (by flotation at room temperature), $Z=2, D_{c}=$ $1 \cdot 756, F(000)=444$. Space group $I 4\left(C_{4}{ }^{5}, \mathrm{No} .79\right)$ determined by structure analysis. $\mathrm{Cu}-K_{\alpha}$ radiation, single-crystal oscillation and Weissenberg photographs taken at $110^{\circ} \pm 10^{\circ} \mathrm{K}$, absorption coefficient, $\mu=92 \mathrm{~cm} .^{-1}$, absorption correction applied.

Three-dimensional Structure Determination.-The systematic absences and the relations between the intensities are consistent with three space groups, $I 4 / m, I \overline{4}$, and $I 4$. Nardelli et $a I^{5}$ showed, by solving the ($h k 0$) projection, that the thiourea molecules were tilted with respect to the c-axis and could not lie in the mirror plane as required for $I 4 / \mathrm{m}$. This projection also showed that the nickel and chlorine atoms all lay on the lines $(0,0, z)$ and $\left(\frac{1}{2}, \frac{1}{2}, z\right)$. Moderate agreement ($R=0 \cdot 19$) was obtained for ($h h l$) reflections with a structure corresponding to the space group $I \overline{4}$; the molecule consisted of a nickel atom (at $0,0,0$) surrounded by two chlorine atoms (at $0,0,2 \cdot 4$ and $0,0,-2 \cdot 4 \AA$) and four sulphur atoms (at $x_{\mathrm{S}}, y_{\mathrm{S}}, 0$ and the three positions related by the $\overline{4}$ symmetry), giving $\mathrm{S}-\mathrm{Ni}=2 \cdot 45 \AA$. The $\mathrm{S}-\mathrm{C}$ bond length was $1.64 \AA$ and the $\mathrm{C}-\mathrm{N}$ bond length $\mathrm{l} \cdot 43 \AA$.

We started to refine this structure from the co-ordinates of Nardelli et al. ${ }^{5}$ but with the average isotropic temperature factor, $U=0.008 \AA^{2}$, which was about one-third of theirs to allow for the lower temperature.

For the first calculation of ($h k l$) structure factors, R was $0 \cdot 29$. After two cycles of isotropic refinement and two cycles of anisotropic refinement R fell to 0.16 and the largest shifts were
${ }^{1}$ Kunchur and Truter, $J ., 1958,2551$.
2 Truter, J., 1960, 997.
${ }^{3}$ Kunchur and Truter, J., 1958, 3478.
${ }^{4}$ Truter and Rutherford, $J ., 1962,1748$.
; Nardelli, Cavalca, Rraibanti, Gazzetta, 1956, 86, 949.
0.7 of the corresponding standard deviations. Refinement was discontinued, however, because the value of R was too high at this stage of refinement for a non-centrosymmetrical structure with the heavy atoms in special positions [cf. $R=0.08$ in tetrakisthioacetamidecopper (I) chloride, ${ }^{4}$ also $\left.I \overline{4}\right]$; moreover, $R_{(h k 0)}$ was $0 \cdot 09$, i.e., lower than $R_{(h k l)}$, whereas normally the R value for a centrosymmetrical projection in a non-centrosymmetric structure is higher than $R_{(h k l)}$. This, together with implausible bond lengths ($\mathrm{S}-\mathrm{C}=1.57, \mathrm{C}-\mathrm{N}=1.39$ and $1.45 \AA$) led us to conclude that the structure was wrong. Various explanations were considered, the correct one being that the space group is actually $I 4$; this gives the same ($h k 0$) projection as $I \overline{4}$, but all the thiourea molecules are oriented in the same direction along the c-axis as shown in Figs. 1 and 2. Thus the chlorine atoms, each at $00 z$, are independent and have different environments. With Nardelli et al. ${ }^{5}$ co-ordinates refinement was started again in $I 4$. For the first set of ($h k l$) structure factors R was 0.28 ; this was reduced in two cycles of isotropic refinement to 0.18 and by eight cycles of anisotropic refinement to 0.078 .

At this stage the hydrogen atoms were included in positions which corresponded to a completely planar thiourea molecule as found by electron diffraction. ${ }^{6}$ No improvement was recorded in R and the shifts indicated in the co-ordinates of the hydrogen atoms would have placed them in impossible positions. They were therefore omitted and refinement proceeded until the largest shift was 0.75 of the corresponding standard deviation. The results of this first refinement are shown in Tables 1 and 2.

Table 1.
Atomic co-ordinates (\AA).

	First refinement			Second refinement				Minimum standard deviation		
	x	y	z	x	y	z	z^{\prime}	$\sigma(x)$	$\boldsymbol{\sigma}(y)$	$\sigma(z)$
Ni	$0 \cdot 000$	0.000	$0 \cdot 000$	0.000	0.000	$0 \cdot 109$	0	--	-	(0.004)
$\mathrm{Cl}(1)$	$0 \cdot 000$	$0 \cdot 000$	$2 \cdot 409$	0.000	0.000	$2 \cdot 505$	$2 \cdot 397$	-	-	0.005
$\mathrm{Cl}(2)$	$0 \cdot 000$	$0 \cdot 000$	-2.490	0.000	0.000	-2.406	-2.514	-	-	0.005
S.	0.272	$2 \cdot 428$	-0.266	$0 \cdot 272$	$2 \cdot 428$	-0.178	-0.287	0.002	0.002	$0 \cdot 004$
C	$1 \cdot 479$	3.126	0.783	$1 \cdot 475$	3-123	0.851	0.742	0.011	0.011	$0 \cdot 012$
N(1)	1.883	$4 \cdot 370$	0.475	1.881	$4 \cdot 364$	0.557	0.449	0.011	0.010	$0 \cdot 013$
N(2) \ldots	1.969	$2 \cdot 479$	1.815	1.977	2.476	$1 \cdot 888$	1.780	0.010	0.011	0.011

Table 2.
Thermal parameters (all units are $10^{-3} \AA^{2}$).

	U_{11}	σ	U_{29}	σ	U_{33}	σ	U_{12}	σ	U_{23}	σ	U_{13}	σ
First refinement												
Ni.	13		13		10							
$\mathrm{Cl}(1)$.	15		15		6							
$\mathrm{Cl}(2)$.	8		8		10							
S	12		9		9		-1		0		-3	
C	16		10		17		-0		-7		6	
$\mathrm{N}(1)$	31		20		29		-14		8		-15	
$\mathrm{N}(2)$.	21		23		16		-12		-1		-15	
Second refinement												
Ni...	13	$0 \cdot 9$	13	0.9	8	$1 \cdot 6$	-		-		-	
$\mathrm{Cl}(1)$	16	$1 \cdot 4$	16	1.4	10	$2 \cdot 1$	-		-		-	
$\mathrm{Cl}(2)$	8	1.2	8	1.2	11	$2 \cdot 0$	-		-		-	
S	13	$0 \cdot 8$	9	$0 \cdot 8$	8	1.0	-1	$0 \cdot 8$	1	$0 \cdot 9$	-3	$1 \cdot 0$
C	14	5	12	5	18	5	0	4	-6	4	2	4
N(1)	30	6	19	5	33	6	-13	4	4	5	-14	5
$\mathrm{N}(2)$.	22	5	24	5	18	5	-13	4	-6	4	-14	4

The co-ordinates corresponded to a molecule with two different $\mathrm{Ni}-\mathrm{Cl}$ bond lengths, $\mathbf{2 . 4}$ and $2 \cdot 5 \AA$, and $\mathrm{Cl}-\mathrm{Ni}-\mathrm{S}$ angles significantly different from 90°. It was necessary to check that this was real and not an example of parameter interaction ${ }^{7}$ causing refinement to an incorrect structure. This kind of structure, i.e., one with a polar space group and atoms of differing

[^0]scattering power, is most likely to show this effect and the w-co-ordinates are the most vulnerable, x and y having been fixed from a centrosymmetrical projection. One symptom of parameter interaction is that a different starting structure will refine to a different final one so that, in the worst cases, the structure is indeterminable. To test this a new starting structure was chosen; the x - and y-co-ordinates were again those of Nardelli $e t$ al., ${ }^{5}$ but the z-co-ordinates were chosen

Fig. 1. The structure projected down the - -axis. Atoms shown by broken circles are in thiourea molecules co-ordinated to the nickel at $\frac{1}{2}, \frac{1}{2}, \sim \frac{1}{2}$. Broken lines show $\mathrm{N}-\mathrm{Cl}$ contacts with their distances in \AA.

Fig. 2. The structure projected down the a-axis. Broken lines show $\mathrm{N}-\mathrm{Cl}$ contacts with their distances in \AA; the closest intermolecular $\mathrm{N}-\mathrm{S}$ distance is indicated by an arrow.
to make z_{Ni} and z_{S} both zero, and the dimensions of the thiourea molecule the same as those in the uncombined molecule, ${ }^{1}$ i.e., $\mathrm{S}-\mathrm{C} 1.71$ and $\mathrm{C}-\mathrm{N} 1.33 \AA$, while z for $\mathrm{Cl}(1)$ was +2.4492 and for $\mathrm{Cl}(2)-2 \cdot 4492 \AA$. The anisotropic thermal parameters were those resulting from the refinement of the previous set of co-ordinates. $\quad R$ was $0 \cdot 17$; four cycles of refinement reduced it to 0.08 , and three further cycles were required to reduce it to 0.07 and give no more significant

Fig. 3. Bond lengths, in \AA, and angles in dichlorotetrakisthioureanickel. The uncertainty in these values is given in Table 5.

changes in the parameters. The main difference in the refinement procedures was that from the second set of co-ordinates the z-co-ordinate of nickel was allowed to vary.

Results.-Table 1 shows the parameters after the first refinement, and the final parameters after the second refinement with their " minimum" standard deviations, a term explained below. To facilitate comparison of the two sets of results, the column z^{\prime} is given corresponding to z with the origin for the second set of co-ordinates chosen to make $z^{\prime} \mathrm{xi}=0$. While for the

Table 3.
Observed structure amplitudes and calculated structure factors $\left(F_{c}=A+i B\right) \times 10$.

Table 3. (Continued.)

x - and y-co-ordinates the two sets of refinements give the same results within the " minimum " standard deviation, for the z-co-ordinates the differences may be as much as four times the corresponding " minimum " standard deviation.

This difference in z values and the slow convergence of the refinement indicate that there is some parameter interaction. In the least-squares refinement procedure we used ${ }^{8}$ the diagonal approximation; allowance has been made for interaction between the overall temperature factor and the scale and, for any given atom, for interaction between its co-ordinate parameters and for interaction between its thermal parameters. In the full least-squares matrix the interaction between the co-ordinate and the thermal parameters of one atom are allowed for, and so too are the interactions between the parameters of one atom and those of another. One result of using the diagonal approximation instead of the full matrix is that the calculated standard deviations are less than they should be, so we have referred to them as the " minimum " standard deviations. Internal evidence suggests that a conservative estimate of the error would be given by doubling the " minimum " value for $\sigma(x)$ and $\sigma(y)$ and multiplying $\sigma(z)$ by four; this has been taken as the uncertainty.

Table 2 shows the thermal parameters aftre the first and the second refinement (the first were used as the starting parameters for the second refinement). These are the same to within twice the " minimum " standard deviation, also shown in Table 2, indicating that they are not very sensitive to changes in the co-ordinates. U_{11}, U_{22}, and U_{33} are the mean square amplitudes of vibration parallel to the a^{*}-, b^{*}-, and c^{*}-axes, respectively, and, with U_{12}, U_{23}, and U_{13}, define the magnitude and orientation of the ellipsoid of vibration with respect to the crystallographic axes.

Table 3 shows the final observed structure amplitudes and the real and imaginary parts of the calculated structure factors for the parameters given in Tables 1 and 2 as the results of the second refinement.

An analysis ${ }^{8}$ of the molecular vibration parameters was carried out. The whole molecule was assumed to move as a rigid body, and internal consistency indicated that the assumption was justified. The calculation gave root-mean-square amplitudes of translatory motion of the molecule as $0.07 \AA$ parallel to c and $0.09 \AA$ in the $a b$-plane, and the r.m.s. amplitudes of rotational oscillation as $1.9^{\circ} \pm 0.2^{\circ}$ about c and $1.8^{\circ} \pm 0 \cdot 2^{\circ}$ about [110]. The co-ordinates were corrected for rotational oscillation, the largest correction being $0.004 \AA$. The corrected co-ordinates are given in Table 4, these, but to 4 decimal places as given by the computer, were used to calculate

Table 4.
Corrected atomic co-ordinates (\AA).

	x	y	z		x	y	z
Ni.	0.000	0.000	$0 \cdot 108$	C	1.477	3.126	$0 \cdot 851$
$\mathrm{Cl}(1)$.	$0 \cdot 000$	$0 \cdot 000$	$2 \cdot 507$	N(1)	1.882	$4 \cdot 368$	0.557
$\mathrm{Cl}(2)$	$0 \cdot 000$	$0 \cdot 000$	-2.408	N(2)	1.979	2.478	$1 \cdot 890$
S	0.272	2.430	-0.179				

the bond lengths and angles, the van der Waals separations, and the plane through the atoms $S, C, N(1)$ and $N(2)$.

The bond lengths and angles are given in Fig. 3. Values for the uncertainty, calculated from $2 \sigma(x), 2 \sigma(y)$, and $4 \sigma(z)$ of Table 1, are shown in Table 5. The thiourea molecule is planar; the equation of the plane is

$$
0.719 x-0.375 y-0.585 z+0.548=0
$$

and the largest deviation is $0.002 \AA$ for the carbon atom. The nickel atom lies $0.55 \AA$ from this plane so that the $\mathrm{Ni}-\mathrm{S}$ bond makes an angle of 77° with the normal to the plane.

Each nitrogen atom has one chlorine atom as a neighbour at a distance short enough to represent a hydrogen bond, $3 \cdot 23$ and $3 \cdot 30 \AA$ as shown in Figs. 1 and 2. For $N(2)$ the chlorine is $\mathrm{Cl}(1)$ of the same molecule, the angle $\mathrm{C}-\mathrm{N}(2)-\mathrm{Cl}(1)$ is $107 \cdot 0^{\circ}$. For $\mathrm{N}(1)$ the chlorine is $\mathrm{Cl}(2)$
${ }^{8}$ Cruickshank, Pilling, and (in part) Bujosa, Lovell, and Truter, "Computing Methods and the Phase Problem in X-ray Crystal Analysis," Pergamon Press, Oxford, 1961, p. 32.
of the molecule related to the original one by body-centring, i.e., $\mathrm{Cl}(2)^{\prime}$, and the angle $\mathrm{C}-\mathrm{N}(1)-\mathrm{Cl}(2)^{\prime}$ is $106 \cdot 3^{\circ}$. Neither chlorine atom lies in the plane of the thiourea molecule, the distances being $0 \cdot 86$ and $\mathbf{1} \cdot 0 \AA$ for $\mathrm{Cl}(1)$ and $\mathrm{Cl}(2)^{\prime}$, respectively.

Table 5.
Uncertainty in bond length (\AA) and angles.

$\mathrm{Ni}-\mathrm{Cl}$	0.02	$\mathrm{S}-\mathrm{C}$	0.03	$\mathrm{Cl}-\mathrm{Ni}-\mathrm{S}$	$0.4{ }^{\text {a }}$	$\mathrm{S}-\mathrm{C}-\mathrm{N}$	$1.5{ }^{\circ}$
$\mathrm{Ni}-\mathrm{S}$	0.004	$\mathrm{C}-\mathrm{N}$	$0 \cdot 04$	$\mathrm{Ni}-\mathrm{S}-\mathrm{C}$.	$0 \cdot 8$	$\mathrm{N}-\mathrm{C}-\mathrm{N}$.	$2 \cdot 2$

There is only one other contact of less than $\mathbf{3 \cdot 5} \AA$ between two atoms which are not bonded to the same atom, that is a distance $3.47 \AA$ from $N(2)$ to the sulphur atom of another thiourea molecule, as shown in Fig. 2. Although this length is within the range found for the hydrogen bonds $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ in thioacetamide, ${ }^{2}$ it is unlikely that a hydrogen atom is situated along this direction because the angles at $\mathrm{N}(2)$ are $\mathrm{C}^{\prime}-\mathrm{N}(2)^{\prime}-\mathrm{S}^{\prime \prime} 65 \cdot 5^{\circ}$ and $\mathrm{Cl}(1)^{\prime}-\mathrm{N}(2)^{\prime}-\mathrm{S}^{\prime \prime} 88 \cdot 3^{\circ}$.

Each chlorine atom is bonded to one nickel atom and hydrogen-bonded by four nitrogen atoms. For $\mathrm{Cl}(1)$ the angle $\mathrm{Ni}-\mathrm{Cl}(1)-\mathrm{N}(2)$ is 79° while for $\mathrm{Cl}(2)$ the $\mathrm{Ni}-\mathrm{Cl}(2)-\mathrm{N}(1)^{\prime}$ angle is 117.5°.

Discussion

The structure as a whole consists of molecules, all oriented in the same way and probably held by $\mathrm{Cl} \cdots \mathrm{N}$ hydrogen bonds as well as by van der Waals forces. Our cell dimensions are smaller than those found at room temperature; ${ }^{5}$ the ratio, $\mathbf{1 : 1 . 0 0 6 5}$, is the same for the a-axis as for the c-axis, an observation consistent with the nearly isotropic thermal motion we found for the heavy atoms (Table 2) and the lack of any extensive system of strong bonding in the structure.

For comparisons of bond lengths to be meaningful it is essential that only the results of three-dimensional determinations be considered. (A striking example of the discrepancy between the results of two- and three-dimensional work has recently been published by Grant and Speakman. ${ }^{10}$) Since 1957 when we made a preliminary report ${ }^{11}$ on the

Table 6.
Bond lengths (\AA) in thioamide ligands.

Compound*	$\mathrm{C}-\mathrm{S}$	$\mathrm{C}-\mathrm{N}$	$\underline{I} \dagger$	R	Ref.	Remarks
Thiourea	1.70 ± 0.02	1.33 ± 0.02	Yes	$0 \cdot 11$	1	\ddagger
(Thio) $4_{4} \mathrm{Cl}_{2} \mathrm{Ni} \ldots \ldots . .$.	1.73 ± 0.03	$1 \cdot 32,1 \cdot 34 \pm 0.04$	No	0.07	-	
(Thio) ${ }_{2}\left(\mathrm{NCS}_{2} \mathrm{Ni} \ldots\right.$	$1 \cdot 77$	1.31, 1.31	Yes	$0 \cdot 16$	a	§
[(Thio) $\left.{ }_{3} \mathrm{Cu}\right] \mathrm{Cl}$.....	1.80-1.83 ± 0.01	$1.24-1.46 \pm 0.01$	No	$0 \cdot 19$	b	II
(Thio) $2_{2} \mathrm{Cl}_{2} \mathrm{Zn} \ldots \ldots . .$.	1.78 ± 0.02	$1.26,1.30 \pm 0.03$	Yes	$0 \cdot 15$	3	
Thicacetamide	1.713 ± 0.006	1.324 ± 0.008	Yes	$0 \cdot 12$	2	
$\left[(\text { Thacet })_{4} \mathrm{Cu}\right] \mathrm{Cl}$...	1.71 ± 0.02	1.31 ± 0.02	No	0.09	4	

* Thio $=$ thiourea; Thacet $=$ thioacetamide. \dagger An indication of the presence of a centre of symmetry in the crystal structure. \ddagger These results differ slightly from the published values ${ }^{1}$ because they have been obtained by (a) carrying out a refinement of the structure of thiourea by the same methods and with the same scattering factors as in the present work, (b) including the hydrogen atoms, and (c) using the results to calculate the correction for rotational oscillation by Cruickshank's revised procedure. ${ }^{9}$ § Partial three-dimensional data. IT Three crystallographically independent thiourea molecules.
(a) Nardelli, Braibanti, and Fava, Gazzetta, 1957, 1209. (b) Knobler, Okaya, and Pepinsky, Z. Krist., 1959, 111, 385.
investigation of the dimensions of thioamides free and as complexes, a number of these complexes have been subjected to three-dimensional crystal-structure analysis; the results are summarised in Table 6. The standard deviations quoted in Table 6 are those given by the authors of the papers; the value $\pm 0.01 \AA$ for tristhioureacopper(I) chloride seems

[^1]to us to be optimistic; not only was refinement not continued beyond $R=0 \cdot 186$, but the structure is non-centrosymmetrical and so likely to exhibit parameter interaction. Table 6 shows that in two complexes the dimensions of the ligand molecules have not changed significantly, whereas for the others there appears to be an increase in the $\mathrm{C}-\mathrm{S}$ bond length. There is not yet sufficient really accurate work for it to be possible to decide whether the dimensions of the ligand do vary from complex to complex. If they do vary for the thioamides their behaviour is in marked contrast to that of biuret. All bond lengths of the biuret portion of the molecule are the same in biuret hydrate, ${ }^{12}$ in the zinc complex ${ }^{13}$ (in which oxygen is the ligand atom), and in a copper complex ${ }^{14}$ (in which nitrogen is the ligand atom).

In dichlorotetrakisthioureanickel, as in all the other complexes of Table 6 in which the sulphur atom is bound to one metal atom, the metal lies significantly out of the plane of the thioamide. There is some evidence for $\mathrm{N}-\mathrm{Cl}$ hydrogen bonding in all the suitable complexes, although in dichlorobisthioureazinc the bonding is confined to one intramolecular $\mathrm{N}-\mathrm{Cl}$ hydrogen bond and the shortest intermolecular approaches are between chlorine and sulphur. This type of bonding is presumably not strong enough to be structure-determining.

The most interesting feature of the results is the non-centrosymmetrical environment about the nickel atom. A model reveals no reason for the preference for 4 instead of $\overline{4}$ symmetry; indeed, the latter would give a flattened tetrahedron instead of a pyramidal arrangement of hydrogen bonds about the chlorine atoms and seems more likely. There is no doubt that the effect is real. The centre of the square containing the four sulphur atoms is $0.23 \AA$ from the mid-point of the line joining the two chlorine atoms, so that there is no position in which the nickel atom could have a centrosymmetrical arrangement of bonds. The distance between the mid-points is changed by only $0.01 \AA$ when the z-co-ordinate of nickel is treated as a parameter in the refinement (see Table 1). The observed position of the nickel atom is not on either of the mid-points, or on the line joining the two mid-points. It is, in fact, closer to $\mathrm{Cl}(1)$, making $\mathrm{Ni}-\mathrm{Cl}(1)$ shorter than $\mathrm{Ni}-\mathrm{Cl}(2)$ by $0.12 \AA$, which is significant $(\Delta / \sigma=4 \cdot 2)$. A complex with stereochemistry similar to this has been found ${ }^{15}$ in $\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{NCS}_{2}\right.$ in which there are five bonds to nitrogen, forming a square pyramid $(\mathrm{Ni}-\mathrm{N}=2.06 \pm 0.04)$ and the sixth to sulphur, $2.50 \AA$, which is long enough to represent a purely ionic separation. There does not appear to be any preferred symmetry for the environment about nickel(II) in spin-free complexes; for example, there may be none if it is not required by the space group, as in dihydrogen aquoethylenediaminetetra-acetatonickel, ${ }^{16}$ a 4 -fold axis as in the present compound, or a centre of symmetry as in di-isothiocyanatobisthioureanickel. ${ }^{16 a}$

Although only a few of the structures in which nickel is known to be co-ordinated to sulphur have been investigated by three-dimensional methods, it is already clear that the nickel atom possesses at least two different radii. In 4-co-ordinated, diamagnetic complexes, the Ni-S distance lies within the range $2 \cdot 1-2 \cdot 3 \AA$, e.g., $2 \cdot 16 \AA$ in bisthiosemicarbazidatonickel, ${ }^{17}$ while in 6 -co-ordinated complexes the $\mathrm{Ni}-\mathrm{S}$ distance lies within the range $2 \cdot 4-2 \cdot 6 \AA$, e.g., $2 \cdot 46 \AA$ in the present work. These observations support the ligandfield theory which predicts that the stronger field produced by the ligands closer to the nickel will cause the d_{γ}-electrons to pair in the $d_{2} z^{2}$-orbitals, so producing a diamagnetic complex which has no close neighbours in the z-direction.

[^2]
Experimental

The method of Rosenheim and Meyer ${ }^{18}$ was used to prepare the compound. It crystallised as olive-green needles elongated parallel to c.

All X-ray photographs were taken with $\mathrm{Cu}-K_{\alpha}$ radiation. The crystal was cooled in a stream of nitrogen with an apparatus adapted from that described by Robertson. ${ }^{19}$ No phase transformation took place on cooling. From time to time the temperature at the site of the crystal was measured and found to lie within the range $100-120^{\circ} \mathrm{K}$.

Accurate values of the unit-cell dimensions were obtained from Weissenberg photographs on which the diffraction pattern of a copper wire was superimposed for calibration. Equiinclination Weissenberg photographs were taken about the a - and the c-axis up to the fourth and the fifth layer line, respectively; 404 of a possible 470 independent reflections gave measurable intensities. A multiple-film technique was used and the intensities of the spots were estimated visually with the aid of a calibration strip. For non-zero layers the Phillips spot-shape correction factor ${ }^{20}$ was applied; this, and the application of Lorentz and polarisation corrections, were carried out on the Leeds University Ferranti Pegasus computer with a programme written by Mr. J. G. F. Smith. No absorption correction was applied to the intensities measured about the c-axis because the crystal was 0.1 mm . in diameter; but the crystal set about the a-axis had been cut to form a cube of side 0.2 mm ., so these intensities were corrected for absorption as for a sphere. ${ }^{21}$ Correlation of the layer lines gave a set of relative values for $F(h k l)$, the first scale factor was obtained by comparison of $F(h k 0)$ with the values calculated by Nardelli et al. ${ }^{5}$ and the scale factor was one of the parameters in the refinement.

The scattering factors were those of Berghuis et al. ${ }^{22}$ for carbon, nitrogen, and chloride ion and that of Watson and Freeman ${ }^{23}$ for Ni^{2+} with a correction for the real part of the anomalous dispersion; ${ }^{24}$ for sulphur the corrected scattering factor of Tomiie and Stam ${ }^{25}$ was used. Refinement was carried out by the method of least squares on the Pegasus computer with programmes written by Cruickshank et al. ${ }^{8}$ The function minimised was $\left.R^{\prime}=w\left(\left|F_{o}\right|\right)-\left|F_{c}\right|\right)^{2}$, where w was taken as $1 /\left|F_{o}\right|$. Analysis of the molecular vibration and correction for rotational oscillation were carried out on the computer with programmes written by Mr. Bujosa and Dr. Cruickshank. ${ }^{8}$

We thank Mr. J. G. F. Smith and other colleagues ${ }^{8}$ for the use of their programmes, and the Director of the Leeds University Computing Laboratory for computing facilities. One of us (A. L.-C.) thanks the Physics Department (Sevilla) of the Consejo Superior de Investigaciones Cientificas for leave to hold a Brotherton Research Fellowship. Some of the equipment was provided by the Royal Society and Imperial Chemical Industries Limited.

Department of Inorganic and Structural Chemistry, The University of Leeds.
[Received, September 10th, 1962.]

[^3]
[^0]: ${ }^{6}$ Dvoriankin and Vainstein, Kristallografya, 1960, 5, 589.
 ${ }^{7}$ Geller, Acta Cryst., 1961, 14, 1026.

[^1]: ${ }^{9}$ Cruickshank, Acta Cryst., 1961, 14, 896.
 ${ }^{10}$ Grant and Speakman, Acta Cryst., 1962, 15, 292.
 ${ }^{11}$ Truter, Acta Cryst., 1957, 10, 785.

[^2]: 12 Hughes, Yakel, and Freeman, Acta Cryst., 1961, 14, 345.
 ${ }_{13}$ Nardelli, Fava, and Giraldi, Proc. 7th Internat. Conference on Co-ordination Chemistry, Stockholm, 1962, p. 211.
 ${ }_{14}$ Freeman, Smith, and Taylor, Acta Cryst., 1961, 14, 407.
 15 Poraj-Koshitz, Proc. Inst. Crystallogr., 1954, 10, 117.
 ${ }^{16}$ Smith and Hoard, J. Amer. Chem. Soc., 1959, 81, 549.
 ${ }^{16 a}$ Nardelli, Braibanti, and Fava, Gazzetta, 1957, 1209.
 ${ }_{17}$ Calvalca, Nardelli, and Fava, Proc. 7th Internat. Conference on Co-ordination Chemistry, Stockholm, 1962, p. 211.

[^3]: ${ }^{16}$ Rosenheim and Meyer, Z. anorg. Chem., 1906, 49, 13.
 ${ }^{16}$ Robertson, J. Sci. Instr., 1960, 37, 41.
 ${ }^{20}$ Phillips, Acta Cryst., 1954, 7, 746.
 ${ }^{21}$ International Tables for X-ray Crystallography, Vol. II, 1959, Kynoch Press, Birmingham.
 22 Berghuis, Haanappel, Potters, MacGillavry, and Veenendaal, Acta Cryst., 1955, 8, 478.
 ${ }^{23}$ Watson and Freeman, Acta Cryst., 1961, 14, 27.
 24 Dauben and Templeton, Acta Cryst., 1955, 8, 841.
 ${ }_{25}$ Tomiie and Stam, Acta Cryst., 1958, 11, 126.

